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This paper proposes a hierarchical, multi-resolution framework for the identification of
model parameters and their spatially variability from noisy measurements of the
response or output. Such parameters are frequently encountered in PDE-based models
and correspond to quantities such as density or pressure fields, elasto-plastic moduli
and internal variables in solid mechanics, conductivity fields in heat diffusion problems,
permeability fields in fluid flow through porous media etc. The proposed model has all
the advantages of traditional Bayesian formulations such as the ability to produce mea-
sures of confidence for the inferences made and providing not only predictive estimates
but also quantitative measures of the predictive uncertainty. In contrast to existing
approaches it utilizes a parsimonious, non-parametric formulation that favors sparse rep-
resentations and whose complexity can be determined from the data. The proposed
framework in non-intrusive and makes use of a sequence of forward solvers operating
at various resolutions. As a result, inexpensive, coarse solvers are used to identify the
most salient features of the unknown field(s) which are subsequently enriched by invok-
ing solvers operating at finer resolutions. This leads to significant computational savings
particularly in problems involving computationally demanding forward models but also
improvements in accuracy. It is based on a novel, adaptive scheme based on Sequential
Monte Carlo sampling which is embarrassingly parallelizable and circumvents issues with
slow mixing encountered in Markov Chain Monte Carlo schemes. The capabilities of the
proposed methodology are illustrated in problems from nonlinear solid mechanics with
special attention to cases where the data is contaminated with random noise and the
scale of variability of the unknown field is smaller than the scale of the grid where obser-
vations are collected.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The prodigious advances in computational modeling of physical processes and the development of highly non-linear,
multiscale and multiphysics models poses several challenges in parameter identification. We are frequently using large, for-
ward models which imply a significant computational burden, in order to analyze complex phenomena.The extensive use of
such models poses several challenges in parameter identification as the accuracy of the results provided depends strongly on
assigning proper values to the various model parameters. In mechanics of materials, accurate mechanical property identifi-
cation can guide damage detection and an informed assessment of the system'’s reliability [36]. Identifying property-cross
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correlations can lead to the design of multi-functional materials [61]. In biomechanics, the detection of variations in mechan-
ical properties of human tissue can reveal the appearance of diseases (arteriosclerosis, malignant tumors) but can also be
used to assess the effectivity of various treatments [4,20]. Permeability estimation for soil transport processes can assist
in detection of contaminants, oil exploration etc [22,68].

We consider phenomena described by a set of (coupled) elliptic, parabolic or hyperbolic PDEs and associated boundary
(and initial) conditions:

AY®);f(x)) =0, vxeD (1)

where A denotes the differential operator defined on a domain D € RY, where d is the number of spatial dimensions. .4 de-
pends on spatially varying coefficients f(x),x € D. Advances in computational mathematics have given rise to several effi-
cient solvers for a wide-range of such systems and have revolutionized simulation-based analysis and design [52]. Our
primary interest is to identify f(x) from a set of (potentially noisy) measurements of the response y; = y(x;) at a number
of distinct locations x; € D. In the case of time-dependent PDEs, the available data might also be indexed by time. Several
different processes in solid and fluid mechanics, transport phenomena, heat diffusion etc fall under this general setting
and even though the coefficients f(x) have a different physical interpretation, the associated inverse problems exhibit similar
mathematical characteristics.

Two basic approaches have been followed in addressing problems of data-driven parametric identification. On one
hand, deterministic optimization techniques which attempt to minimize the sum of the squares of the deviations between
model predictions and observations. Gradient or global, intrusive or non-intrusive techniques are introduced for perform-
ing the optimization task. Usually the objective function is augmented with regularization terms (e.g. Tikhonov regulari-
zation [58] which alleviate issues with the ill-posednesss of the problem [5,18,26,37,59,64]. Such deterministic inverse
techniques based on exact matching or least-squares optimization, lead to point estimates of unknowns without rigor-
ously considering the statistical nature of system uncertainties and without providing quantification of the uncertainty
in the inverse solution.

The direct stochastic counterpart of optimization methods involves frequentist approaches based on maximum likelihood
estimators that aim at maximizing the probability of observations given the inverse solution maximum [17,19]. In recent
years significant attention has been directed towards statistical approaches based on the Bayesian paradigm which attempt
to calculate a (posterior) probability distribution function on the parameters of interest. Bayesian formulations offer several
advantages as they provide a unified framework for dealing with the uncertainty introduced by the incomplete and noisy
measurements and assessing quantitatively resulting inferential uncertainties. Significant successes have been noted in
applications such as medical tomography [69], geological tomography [2,24], hydrology [43], petroleum engineering
[8,27], as well as a host of other physical, biological, or social systems [41,47,56,67].

Identification of spatially varying model parameters poses several modeling and computational issues. Representations of
the parametric fields in existing approaches artificially impose a minimum length scale of variability usually determined by
the discretization size of the governing PDEs [43]. Furthermore, they are associated with a very large vector of unknowns.
Inference in high-dimensional spaces using standard optimization or sampling schemes (e.g. Markov Chain Monte Carlo
(MCMQ)), is generally impractical as it requires an exuberant number of calls to the forward simulator in order to achieve
convergence. Particularly in Bayesian formulations where the inference results are much richer and involve a distribution
rather than a single value for the parameters of interest, the computational effort implied by repeated calls to the forward
solver can be enormous and constitute the method impractical for realistic applications. These problems are amplified if the
posterior distribution is multi-modal i.e. several significantly different scenaria are likely given the available data. While it is
apparent that, computationally inexpensive, coarser scale simulations can assist the identification process [13], the critical
task of efficiently transferring the information across resolutions still remains [30,49,68]. Previous attempts using parallel
tempering (e.g. [32] or hierarchical representations based on Markov trees [65] require performing inference on represen-
tations at various resolutions simultaneously.

In the present paper we adopt a nonparametric model which is independent of the grid of the forward solver and is rem-
iniscent of non-parametric kernel regression methods. The unknown parametric field is approximated by a superposition of
kernel-type functions centered at various locations. The cardinality of the representation, i.e. the number of such kernels, is
treated as an unknown to be inferred in the Bayesian formulation. This gives rise to a very flexible model that is able to adapt
to the problem and the data at hand and find succinct representations of the parametric field of interest. Prior information on
the scale of variability can be directly introduced in the model.

Inference is performed using Sequential Monte Carlo samplers. They utilize a set of random samples, named particles,
which are propagated using simple importance sampling, resampling and updating/rejuvenation mechanisms. The algo-
rithm is directly parallelizable as the evolution of each particle is by-and-large independent of the rest. The sequence of dis-
tributions defined is based on using solvers that operate on different resolutions and which successively produce finer
discretizations. This results in an efficient hierarchical approach that makes use of the results from solvers operating at
the coarser scales in order to update them based on analyses on a finer scale. The particulate approximations produced pro-
vide concise representations of the posterior which can be readily updated if more data become available or if more accurate
solvers are employed.
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2. Methodology
2.1. Hierarchical bayesian model

The central goal of this work is to build mathematical methods that utilize limited and noisy observations/measurements
in order to identify the spatial variability of model parameters. Given the significant uncertainty arising from the random
noise, lack of data and model error, point estimates are of little use. Furthermore it is important to quantify the confidence
in the estimates made but also in the predictive ability of the model of interest. To that end we adopt a Bayesian perspective.
Bayesian formulations differ from classical statistical approaches (frequentist) in that all unknown parameters (denoted by
0) are treated as random. Hence the results of the inference process are not point estimates but distribution functions.

The basic elements of Bayesian models are the likelihood function L(0) = p(y|#) which is a conditional probability distri-
bution and gives a (relative) measure of the propensity of observing data y for a given model configuration specified by the
parameters 0. The likelihood function is also encountered in frequentist formulations where the unknown model parameters
0 are determined by maximizing L(6). This could be thought as the probabilistic equivalent of deterministic optimization
techniques commonly used in inverse problems. It can suffer from the same issues related to the ill-posedeness of the prob-
lem. The second component of Bayesian formulations is the prior distribution p(0) which encapsulates in a probabilistic man-
ner any knowledge/information/insight that is available to the analyst prior to observing the data. Although the prior is a
point of frequent criticism due to its inherently subjective nature, it can prove extremely useful in engineering contexts
as it provides a mathematically consistent vehicle for injecting the analyst’s insight and physical understanding. The com-
bination of prior and likelihood based on Bayes’ rule yields the posterior distribution 7(8) which probabilistically summarizes
the information extracted from the data with regards to the unknown 6:

7(0) = p(oy) = L0 o piyi0)p(0) @
p)
Hence Bayesian formulations allow for the possibility of multiple solutions - in fact any 6 in the support of the likelihood and
the prior is admissible - whose relative plausibility is quantified by the posterior. Credible intervals can be readily estimated
from the posterior which quantify inferential uncertainties about the unknowns.

Without loss of generality, we postulate the existence of a deterministic, forward model which in most cases of practical
interest corresponds to a Finite Element or Finite Difference model of the governing differential equations. Naturally, forward
models allow for various levels of discretization of the spatial domain and let r denote the resolution they operate upon (lar-
ger r implies finer resolution). In this paper, forward solvers are viewed as messengers, that carry information about the
underlying material properties as they manifest themselves in the response (mechanical, thermal etc) of the medium of
interest. This is especially true in the context of recently developed upscaling schemes [12,16,33,34,39,42,55,62] which at-
tempt to capture the effect of finer scale material variability while operating on a coarser grid. In general, the finer the res-
olution of the forward solver, the more information this provides. This however comes at the expense of computational
effort. It is not unusual that the sufficient resolution of the property fluctuations in many systems of practical interest re-
quires several CPU-hours for a single analysis. Despite the fidelity and accuracy of such high-resolution solvers, they can
be of little use in the context of parameter identification as they will generally have to be called upon several times and sev-
eral system analyses will have to be performed.

Hence an accurate but expensive messenger is not the optimal choice if several pieces of information need to be commu-
nicated. In many cases however, the fidelity of the message can be compromised if the expense associated with the messen-
ger is smaller. This is especially true if the loss of accuracy can be quantified, measures of confidence can be provided and
furthermore if it leads to the same decisions/predictions. In this project we propose a consistent framework for using faster
but less-accurate forward solvers operating on coarser resolutions in order to expedite property identification. Furthermore
these solvers provide a natural hierarchy of models that if appropriately coupled can further expedite the identification pro-
cess. Following the analog introduced earlier, we propose using inexpensive messengers (coarse scale solvers), several times
to communicate the most pivotal pieces of information and more expensive messengers (fine scale solvers) fewer times to
pass on some of the finer details (Fig. 1).

In the remainder of this sub-section, we discuss the basic components of the Bayesian model proposed, with particular
emphasis on the prior for the unknown parametric fields. We then present (sub-Section 2.2) the proposed inference tech-
niques for the determination of the posterior.

2.1.1. Likelihood specification

Let F' = {F{} : G — & denote the vector-valued mapping implied by the forward model (operating at resolution r), which
given f(x) € G (Eq. (1)) provides the values of response quantities represented by the data y = {y;} € £. This function is the
discretized version of the inverse of the differential operator A in Eq. (1) parameterized by f(x). Each evaluation of F" for a
specific field f(x) implies a call to the forward solver (e.g. Finite Elements) that operates on a discretization/resolution r. In
the proposed framework, the function F" will be treated as a black box. Naturally data and model predictions will deviate
when the former are obtained experimentally due to the unavoidable noise in the measurements. Most importantly perhaps
this deviation can be the result of the model not fully capturing the salient physics either because the governing PDEs are an
idealization or because of the discretization error in their solution. We postulate the following relationship:
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Fig. 1. Hierarchy of solvers operating on different resolutions.
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where e§” quantify the deviation between model predictions and data, and which will naturally depend on the resolution r of
the forward solver. Quite frequently the data available to us are in the form of disparate observations, that correspond to
different physical phenomena (e.g. temperatures and displacements in a thermo-mechanical problem) in which case the
computational model corresponds to a coupled multiphysics solver.

The probabilistic model for e} in Eq. (3) gives rise to the likelihood function (Eq. (2)). In the simplest case where e,@” are
assumed independent, normal variates with zero mean and variance ¢2:

1 (- F'(f®))?
2

2
Gr

n
m@ﬁa»o»«gqmp{— } and me@Loaaggaw{—zézE}M—FWUWDV} @)
r r =
More complex models which can account for the spatial dependence of the error variance ¢?2 or the detection of events asso-
ciated with sensor malfunctions at certain locations, can readily be formulated.
In general the variances g2 are unknown (particularly the component that pertains to model error) and should be inferred
from the data. When a conjugate, I'(a, b) prior is adopted for 2, the error variances can be integrated out from Eq. (4) fur-
ther simplifying the likelihood:

I'(a+n/2)
n a+n/2
(b+1£0-FO0?)

L:(f(x)) = pylf (x)) o< ()

where I'(z) = [ t*"Te~tdt is the gamma function.
It should be noted that in some works [31,38], explicit distinction between model and observation errors is made, pos-
tulating a relation of the following form:

obserwvation/data = model prediction + model error + observation error (6)

As it has been observed [70], independently of the amount of data available to us, these three components are not identifiable,
meaning several different values can be equally consistent with the data. This however does not imply that all possible val-
ues are equally plausible. For example a large number of values of the observation error that are all positive or all negative
(for all observations) are not consistent with the perception of random noise but most likely imply a bias of the model or
perhaps a miscalibrated sensors used to collect the data. Bayesian formulations are highly suited for such problems as they
provide a natural way of quantifying a priori and a posteriori relative measures of plausibility. In the following we restrict the
presentation on models of Eq. (3) as the focus of is on identifying the scale of variability of material properties f(x).
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2.1.2. Prior specification

The most critical component involves the prior specification for the unknown material properties as represented by f(x).
In existing Bayesian [36,67], but also deterministic (optimization-based), formulations, f(x) is discretized according to the
spatial resolution of the forward solver. For example, in cases where finite elements are used, the property of interest is as-
sumed constant within each element and therefore the vector of unknowns is of dimension equal to the number of elements.
This offers obvious implementation advantages but also poses some difficulties since the scale of variability of material prop-
erties is implicitly selected by the solver rather than the data. This is problematic in several ways. On one hand if the scale of
variability is larger than the grid, a waste of resources takes place, at the solver level which has to be run at unnecessarily fine
resolutions, and at the level of the inference process which is impeded by the unnecessarily large dimension of the vector of
unknowns. Furthermore, as the number of unknowns is much larger by comparison to the amount of data it can lead to over-
fitting. This will produce erroneous or even absurd values for the unknowns that may nevertheless fit perfectly the data. Such
solutions will have negligible predictive ability and would be useless in decision making. On the other hand, if the scale of
variability is smaller than the grid, it cannot be identified even if the solver provides sufficient information for discovering
this possibility.

In order to increase the flexibility of the model, we base our prior models for the unknown field(s) f(x) on the convolution
representation of a Gaussian process. An alternative representation of a stationary Gaussian process involves a convolution
of a white noise process a(x) with a smoothing kernel K(-; ¢) depending on a set of parameters ¢ [3,28]:

S0 = [ Ko~z g)a(z)dz 7)
The kernel form determines essentially the covariance of the resulting process, since:
cov(f(1,f(x2)) = E[f (%1, (%2)] = /K(xl —Z;0)K(%2 — z; ¢)dz 8)

For computational purposes, a discretized version of Eq. (7) is used:

k

k
f@)=> az)Kx-2;¢) =Y aK&x-%;¢) 9)
j=1

j=1

In order to increase the expressive ability of the aforementioned model we introduce two improvements. Firstly we consider
that the set of kernel parameters ¢ is spatially varying resulting in a non-stationary process:

k
f@®) =a+> aKx;¢;) xeD (10)
=1
where a, corresponds to a value of ¢, such that the corresponding kernel is 1 everywhere. Such representations can be
viewed as a radial basis network as in [60,63]. Furthermore by interpreting the kernels as basis functions, Eq. (10) it can
be seen as an extension of the representer theorem of Kimeldorf and Wahba [40]. Overcomplete representations as in Eq.
(10) have been advocated because they have greater robustness in the presence of noise, can be sparser, and can have greater
flexibility in matching structure in the data [45,46]. One possible selection for the functional form of Kj, that also has an intu-
itive parameterization with regards to the scale of variability in the material properties, is isotropic, Gaussian kernels:

K% ¢; = (%, 7)) = exp{—7;|x — x;|*} (11)

The parameters t; directly correspond to the scale of variability of f(x). Large t;’s imply narrowly concentrated fluctuations
and large values slower varying fields. The center of each kernel is specified by the location parameter ;. Other functional
forms (e.g. discontinuous) can also be used on their own or in combinations to enrich the expressivity of the expansion in Eq.
(10). Wavelets, steerable wavelets, segmented wavelets, Gabor dictionaries, multiscale Gabor dictionaries, wavelet packets,
cosine packets, chirplets, warplets, and a wide range of other dictionaries that have been developed in various contexts [6]
offer several possibilities.

The second important improvement is that we allow the size of the expansion k to vary. It is obvious that such an assump-
tion is consistent with the principle of parsimony, which states that prior models should make as few assumptions as possible
and allow their complexity to be inferred from the data.

Hence the cardinalityof the model, i.e. the number of basis functions k is the key unknown that must be determined so as
to provide a good interpretation of the observables.

Independently of the form of the kernel adopted, the important, common characteristic of all such approximations (as in
Eq. (10)) is that the field representation does not depend on the resolution of the forward model. The latter affects inference only
through the black-box functions F; (Eq. (3), Fig. 1)) as it will be illustrated in the next sections.

The parameters of the prior model adopted consist of:

e k: the number of kernel functions needed,
. {aj}]’le, the coefficients of the expansion in Eq. (10). Each of those can be a scalar or vector depending on the number of
material property fields we want to infer simultaneously. For example, in a problem of thermo-mechanical coupling
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where the data consists of temperatures and displacements and we want to identify elastic modulus and conductivity,
each g; will be a vector in R?.
. {rj};‘zl the precision parameters of each kernel which pertain to the scale of the unknown field(s), and

. {xj}J’f:1 the locations of the kernels which are points in D.

In accordance with the Bayesian paradigm, all unknowns are considered random and are assigned prior distributions
which quantify any information, knowledge, physical insight, mathematical constraints that is available to the analyst before
the data is processed. Naturally, if specific prior information is available it can be reflected on the prior distributions. We
consider prior distributions of the following form (excluding hyperparameters):

Pk, £} o AT R ) o (k) x p({a} olk) x p({T 3 k) x p({%:}f 1)) (12)

In order to increase the robustness of the model and exploit structural dependence we adopt a hierarchical prior model [23].

2.1.2.1. Model size. Pivotal to the robustness and expressivity of the model is the selection of the model size, i.e. of the num-
ber of kernel functions k in Eq. (10). This number is unknown a priori and in the absence of specific information, sparse rep-
resentations should be favored. This is not only advantageous for computational purposes, as the number of unknown
parameters is proportional to k, but also consistent with the parsimony of explanation principle or Occam’s razor
[35,51,53]. For that purpose, we propose a truncated Poisson prior for k:
e**% if k < Kmax

. (13)
0 otherwise

p(kl|7) o {
The truncation parameter k. is selected based on computer memory limitations and defines the support of the prior. This
prior allows for representations of various cardinalities to be assessed simultaneously with respect to the data. As a result the
number of unknowns is not fixed and the corresponding posterior has support on spaces of different dimensions as discussed

in more detail in the sequence. In this work, an exponential hyper-prior is used for the hyper-parameter 2 to allow for greater
flexibility and robustness i.e. p(4|s) = s exp{—/s}. After integrating out /. we obtain:

1
p(k\s)o<m, for k=0,1,..., Ky (14)

2.1.2.2. Scale. The most critical perhaps parameters of the model are {rj}j’-‘:1 which control the scale of variability in the
approximation of the unknown field(s). If prior information about this is available then it can be readily accounted for by
appropriate prior specification. In the absence of such information however multiple possibilities exist. In contrast to deter-
ministic optimization techniques where ad-hoc regularization assumptions are made, in the Bayesian framework proposed
possible solutions are evaluated with respect to their plausibility as quantified by the posterior distribution. This provides
a unified interpretation of various assumptions that are made regarding the priors of the parameters involved. For example,
consider a general I'(a., b,) prior:

k a
< b‘[{ ar—
p({‘[j}JI':l |k',a‘hb‘r) = 11 F(ar) Tj1 1 EXD(—bI'Ej) (15)
j=

This has a mean a./b. and coefficient of variation 1/./a;. Diffuse versions can be adopted by selecting small a,. A non-infor-
mative prior p(7;) < 1/7; arises as a special case for a; = 2 and b, = 0 which is invariant under rescaling. Furthermore. it offers
an interesting physical interpretation as it favors “slower” varying representations (i.e. smaller 7’s). In order to automatically
determine the mean of the Gamma prior, we express b, = ;a; where (i, is a location parameter for which an Exponential hy-
per-prior is used with a hyper-parameter a, i.e. p(4;) = ie*"f/”#. Integrating out the z’s leads to following prior:

k (ar-1)
K I'a.+1) .7 1
Xk — [ 1
Pt o ) ,1} I'(a:) o G (4,7 + ;") 1o
2.1.2.3. Other parameters. For the coefficients a; a multivariate normal prior was adopted:
(@} olk. 77 ~ N(0, 07 Ix.1) (17)

where I, is the (k + 1) x (k + 1) identity matrix. The hyper-parameter ;2 which controls the spread of the prior is modeled
with a gamma distribution I'(ao, bo). It can readily be marginalized leading to the following prior for a;’s:

1 I(ao +%71)

21 (k+1)/2 1 k 2 ap+(k+1)/2
em) (bo 2 ;:o‘b‘)

p({a;}¥ oIk, a0, bo) = (18)
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Finally, for the unknown kernel locations {xj}]’le, a uniform prior in D is proposed i.e.:

K 1
P&} k) = — (19)
D
where |D| is the length or area or volume of D in one, two or three dimensions, respectively. Naturally, if prior information is
available about subregions with significant property variations this can be incorporated in the prior.

2.1.2.4. Complete model. Let 6, = {{aj}l'-‘zo, {rj}}’-‘zl , {x,»}l'-‘zl} € Oy denote the vector containing all the unknown parameters and
0 = (k,0,). Since k is also assumed unknown and allowed to vary, the dimension of 6, is variable as well and
O A (RM! x (R*)k x DK,

In 2D for example and assuming a scalar unknown field f(x) in the expansion of Eq. (10) the dimension of 6 is
(k+ 1)+ k+ 2k = 2 + 4k. Based on Eq. (12) and Eqgs. (14), (15), (18) and (19), the complete prior model is given by:

1 1’—‘[F(a1+l) a1 1 L1 I(ao +*5Y 1

p(os, aT’a/"aO’bO) = [IE e (ar—1) (ac+1) X
T~ X — T (k+1)/2 ag+(k+1)/2 k
SO M@ g G a4 a ) @m T (st )

(20)

The combination of the prior p(0) with the likelihood L, () (Eq. (5)) corresponding to a forward solver operating on resolution
1, give rise to the posterior density 7,(0) which is proportional to:

7:(0) = p,(0ly) o< L;(0)p(6) (21)

It should be noted that the fact that conjugate (hyper-)priors have been adopted for a2 (Eq. (5)) and the hyperparameters 4
(Eq. (14)), b; (Eq. (16)) and o2 (Eq. (18)) allows for their marginalization and gives rise simpler expressions but does not (sig-
nificantly) affect the computational effort involved. In the case of non-conjugate prior models, MCMC updates for these
parameters would have to be performed but those would not require re-calculation of the response F,@”(-) (Eq. (5)) which
is the most expensive part, as Fg”(-) depend on these parameters indirectly (i.e. through k, a;, 7;, %;).

Even though several parameters have been removed from the vector of unknowns 6 and marginalized in the pertinent
expressions, the corresponding posteriors can be readily be obtained, or rather be sampled from, once the posteriors 7,(0)
have been determined. As it is shown in the numerical examples, of interest could be the variance ¢? of the error term
(Egs. (3) and (4)) which quantifies the magnitude of the deviation between model and data and can serve as a validation
metric (in the absence of observation error) or be used for predictive purposes (see Section 2.3). From Eq. (3) and the con-
jugate prior model adopted for ¢?, it can readily be shown that the conditional posterior is given by a Gamma distribution:

n (r) 2
P(o;2.09) = p(o;2O)m(0y) and  p(o;?6) = r(a by w) (22)
In the context of Monte Carlo simulation, this trivially implies that once samples 0 from 7, have been obtained, the samples
of ;2 can also be drawn from the aforementioned Gamma.

The support of the posteriors 7, lies on u;jg‘g{k} x O. Two important points are worth emphasizing. Firstly, Eq. (21) de-
fines a sequence of posterior densities, each corresponding to a different likelihood and a different forward solver of resolution
r. It is clear that the black-box functions F” appearing in the likelihood in Eq. (4) imply denser mappings for smaller r. This is
because solvers corresponding to coarser resolutions of the governing PDEs are more myopic (compared to solvers at finer
resolutions) to small scale fluctuations of the spatially varying model parameters f(x) (parameterized by 0). As a result the
likelihood functions L, and the associated posteriors 7. will be flatter and have fewer modes for smaller r. The task of iden-
tifying these posteriors becomes increasingly more difficult as we move to solvers of higher refinement (i.e. larger r). It is this
feature that we propose of exploiting in the next section in order to increase the accuracy and improve on the efficiency of
the inference process. In addition, the posteriors 7, are only known up to a normalizing constant (determining p(y) in Eq. (2)
involves an infeasible and unnecessary integration in a very high dimensional space). Each evaluation of 7, for a particular 6
requires calculating F" and therefore calling the corresponding black-box solver. As each of these runs of the forward solver
may involve the solution of very large systems of equations they can be extremely time consuming. It is important therefore
to determine 7, not only accurately, but also with the least possible number of calls to the forward solver. Since solvers cor-
responding to coarser resolutions (smaller r) are faster, it would be desirable to utilize the information they provide in order
to reduce the number of calls to more expensive, finer resolution solvers.

2.2. Determining the posterior — inference

The posterior defined above is analytically intractable. For that reason, Monte Carlo methods provide essentially the only
accurate way to infer ;. Traditionally Markov Chain Monte Carlo techniques (MCMC) have been employed to carry out this
task [21,29,43,44,66]. These are based on building a Markov chain that asymptotically converges to the target density (in this
case 7,) by appropriately defining a transition kernel. While convergence can be assured under weak conditions [48,54], the
rate of convergence can be extremely slow and require a lot of likelihood evaluations and calls to the black-box solver. Par-
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ticularly in cases where the target posterior can have multiple modes, very large mixing times might be required which con-
stitute the method impractical or infeasible. In addition, MCMC is not directly parallelizable, unless multiple independent
chains are run simultaneously and it can be difficult to design a good proposal distribution when operating in high dimen-
sional spaces. More importantly perhaps, standard MCMC is not capable of providing a hierarchical, multi-resolution solution
to the problem. Consider for example, the case that several samples have been drawn using MCMC from the posterior 7,,
corresponding to a solver operating on resolution r = ry. If samples of the posterior 7,, are needed, corresponding to a solver
of finer resolution r, > r; but not significantly different from r;, then MCMC iterations would have to be initiated anew.
Hence there is no immediate way to exploit the inferences made about 7,, even though the latter might be quite similar
to m,,.

In this work we advocate the use of Sequential Monte Carlo techniques (SMC). They represent a set of flexible simulation-
based methods for sampling from a sequence of probability distributions [15,50]. As with Markov Chain Monte Carlo meth-
ods (MCMC), the target distribution(s) need only be known up to a constant and therefore do not require calculation of the
intractable integral in the denominator in Eq. (2). They utilize a set of random samples (commonly referred to as particles),
which are propagated using a combination of importance sampling, resampling and MCMC-based rejuvenation mechanisms
[11,10]. Each of these particles, which can be thought of as a possible configuration of the system’s state, is associated with
an importance weight which is proportional to the posterior value of the respective particle. These weights are updated
sequentially along with the particle locations. Hence if {6\, Wﬁ”}?’:1 represent N such particles and associated weights for dis-
tribution 7,(0) then:

7 (0) = > W05,0(0) 23)
i=1

where W =w;” />"¥ w;” are the normalized weights and , (-) is the Dirac function centered at 6. Furthermore, for any
function h(6) which is m,-integrable [7,9]: '

N
> WPh(o!) — /h(())nr(())d() almost surely (24)
i=1

Before discussing the SMC sampler proposed, it is worth recapitulating the basic desiderata:

(a) Accuracy: Monte Carlo scheme should be able to correctly sample from multi-modal distributions.

(b) Hierarchical, multiscale: Monte Carlo scheme should be able to exploit inferences made using forward solvers corre-
sponding to coarser resolutions and refine them as more elaborate forward solvers are used.

(c) Efficiency: Monte Carlo sampler should require the fewest possible calls to the forward solver. It should be directly par-
allelizable and utilize inferences made using cheaper forward solvers corresponding to coarser resolutions in order to
reduce the number of calls to more expensive forward solvers corresponding to finer resolutions.

The goal is to obtain samples from each of the posterior distributions in Eq. (21) corresponding to solvers with increas-
ingly finer spatial resolution of the governing PDEs, r = 11,15, ...,y Where ry is the coarsest to ry, the finest. For economy of
notation we define the artificial posterior 7, (8) = p(0) that coincides with the prior (which is common to all resolutions and
independent of the forward solver). To demonstrate the proposed process it suffices to consider a pair of these posterior den-
sities 71 (0) o< L1 (0)p(#) and 7,(0) « L,(0)p(#) corresponding to forward solvers at two successive resolutions r;, and r;, (Fig. 2)
and discuss the inferential transitions. Let 7y,,(0) denote a sequence of artificial, auxiliary distributions defined as follows:

T2,(0) = {7 (0)(0) = L7 (0)L3(0)p(0) 7 €0, 1] (25)

T2, (0) T2, (6)

T (0) 71'2(0)

b . = 0.25

bridging scales

coarse fine

Fig. 2. Illustration of bridging densities as defined in Eq. (25) between posterior distributions 7t; (), 7,(0) corresponding to different resolutions of the
governing PDEs. These allow for accurate and computationally efficient transmission of the inferences made to finer scales.
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where y plays the role of reciprocal temperature. Trivially for ) = 0 we recover 7; and for 7 = 1, 7,. The role of these auxiliary
distributions is to bridge the gap between 1, and 7, and provide a smooth transition path where importance sampling can be
efficiently applied. In this process, inferences from the coarser scale solver are transferred and updated to conform with the
finer scale solver. Starting with a particulate approximation for 7,,(0) = p(0) (which trivially involves drawing samples from
the prior with weights wg) = 1), the goal is to gradually update the importance weights and particle locations in order to
approximate the target posteriors at various resolutions. In order to implement computationally such a transition we define
an increasing sequence of {y,}>_, with 7, = 0 and y; = 1 (see sub-section 2.2.2). An SMC-based inference scheme would then
proceed as described in Table 1.

2.2.1. Notes

e The role of the Reweighing step is to correct for the discrepancy between the two successive distributions in exactly the
same manner that importance sampling is employed. The Resampling step aims at reducing the variance of the partic-
ulate approximation by eliminating particles with small weights and multiplying the ones with larger weights. The
metric that we use in carrying out this task is the Effective Sample Size (ESS, Table 1) which provides a measure of
degeneracy in the population of particles as quantified by their variance. If this degeneracy exceeds a specified thresh-
old, resampling is performed. As it has been pointed out in several studies [14], frequent resampling can deplete the
population of its informational content and result in particulate approximations that consist of even a single particle.
Throughout this work ESS,;;; = N/2 was used. Although other options are available, multinomial resampling is most
often applied and was found sufficient in the problems examined.

e A critical component involves the perturbation of the population of samples by a standard MCMC kernel in the Reju-
venation step as this determines how fast the transition takes place. Although there is freedom in selecting the tran-
sition kernel Pg(-, -) (the only requirement is that it is 7, -invariant), there is a distinguishing feature that will be
elaborated further in the next sub-section (see 2.2.3). The target posteriors 7, (as well as the intermediate bridging
distributions in Eq. (25)) live in spaces of varying dimensions as previously discussed. Hence an exploration of the state
space must involve trans-dimensionalproposals. Pairs of such moves can be defined in the context of Reversible-Jump
MCMC (RJMCMC, [25] such as adding/deleting a kernel in the expansion of Eq. (10), or splitting/merging kernels (see
2.2.3). Even though it is straightforward to satisfy the invariance constraint in the RIMCMC framework, it is more dif-
ficult to design moves that also mix fast. As each (R])MCMC requires a likelihood evaluation and a call to a potentially
expensive forward solver, it is desirable to minimize their number while retaining good convergence properties.

e In most implementations of such SMC schemes, the sequence of intermediate, bridging distributions is fixed a priori. In
order to ensure a smooth transition, a large number is selected at very closely spaced .. It is easily understood that for
reasons of computational efficiency, it is desirable to minimize the number of intermediate bridging distributions
while ensuring that the successive distributions are not significantly different. In sub-section 2.2.2 we discuss a novel
adaptive scheme that allow the automatic determination of these distributions resulting in significant computational
savings.

e [t should be noted that the framework proposed is directly parallelizable, as the evolution (reweighing, rejuvenation) of
each particle is independent of the rest. Hence the computational effort can be readily distributed to several processors.

e The particulate approximations obtained at each step, provide a concise summary of the posterior distribution based on
the respective forward solver. This can be readily updated in the manner explained above, if forward solvers at finer
resolutions become available or computationally feasible. Similar bridging distributions can be established between
distinct forward solvers with differences going beyond their respective resolutions. This is made possible by the non-
parametric Bayesian model which is independent of the forward solver and the flexible inference engine based on SMC.

e An advantageous feature of the proposed framework is that the confidence in the estimates made can be readily quan-
tified by establishing posterior (or credible) intervals, i.e. the posterior probability that the unknown field of interest
f(x) exceeds or not a specified threshold, from the particulate approximations (Eq. (23)). It is these credible intervals
(or in general measures of the variability in the estimates such as the posterior variance) that can guide adaptive refine-
ment of the governing PDEs. Traditionally, adaptive refinement has been based on estimates of some error norm in the

Table 1
Basic steps of an SMC algorithm.

SMC algorithm:

(1) Fors =0, let {0),w{'}Y, be the initial particulate approximation to 7, = ;. Set s = 1.
(i) T2y (0))
T2, (00 )

3) Rejuvenate: Use an MCMC kernel Pg(.,.) that leaves 75, invariant to perturb each particle 0(5?1 — )

2) Reweigh: Update weights w{’ = w!

s—1

s+1

(
(
(4) Resample: Evaluate the Effective Sample Size, ESS = 1/2:\':1 (W“) ) and resample the population if it is less than a prescribed threshold ESS ;.
(5) The current population {0§i],w§i)}fil provides a particulate approximation of 7y, ,, in the sense of Egs. (23), (24).

(

6) If s < S(and y, < 1) then set s = s+ 1 and goto to step 2. Otherwise stop.
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solution of the governing PDEs [1]. It is envisioned that the posterior variance at each point ¥ € D in the domain inter-
est can serve as the basis for increasing the resolution of the solver at select regions and making optimal use of the
computational resources available.

2.2.2. Bridging distributions 72,

The role of these auxiliary distributions is to facilitate the transition between two different posteriors 7; and 7, corre-
sponding to two distinct solvers. It is easily understood that if 7r; and 7, are not significantly different, then fewer bridging
distributions will be needed and vice versa. As it is impossible to know a priori how pronounced these differences are, in
most implementations a rather large number of bridging distributions is adopted, erring on the side of safety.

We propose an adaptive SMC algorithm, that extends existing versions [10,11] in that it automatically determines the
number of intermediate bridging distributions needed. In this process we are guided by the Effective Sample Size (ESS, Table
1) which provides a measure of degeneracy in the population of particles. If ESS; is the ESS of the population after the step s
and in the most favorable scenario that the next bridging distribution 7y, , is very similar to 75, , ESSs,; should not be that
much different from ESS;. On the other hand if that difference is pronounced then ESS;,; could drop dramatically. Hence in
order to determine the next auxiliary distribution, we define an acceptable reduction in the ESS, i.e. ESS;,; > (ESS; (where
{ < 1) and prescribe ., (Eq. (25)) accordingly. The revised Adaptive SMC algorithm is summarized in Table 2.

2.2.3. Trans-dimensional MCMC

As mentioned earlier, a critical component in the SMC framework proposed is the MCMC-based rejuvenation step of the
particles 0. It should be noted that the kernel Ps(-,-) in the rejuvenation step (Step 3 of the SMC algorithm) need not be
known explicitly as it does not enter in any of the pertinent equations. It is suffices that it is 7y, -invariant which is the
target density. For the efficient exploration of the state space, we employ a mixture of moves which involve fixed dimension
proposals (i.e. proposals for which the cardinality of the representation k is unchanged) as well as moves which alter the
dimension k of the vector of parameters 0. We consider a total of M = 7 such moves, each selected with a certain probability
as discussed below. Of those, four involve trans-dimensional proposals which warrant a more detailed discussion.

It is generally difficult to design proposals that alter the dimension significantly while ensuring a reasonable acceptance
ratio. For that purpose, in this work we consider proposals that alter the cardinality k of the expansion by 1i.e. k' =k — 1 or
K =k + 1. We adopt the Reversible-Jump MCMC (RIMCMC) framework introduced in [25] according to which such moves
are defined in pairs in order to ensure reversibility of the Markov kernel (even though the reversibility condition is not nec-
essary, it greatly facilitates the formulations). We consider two such pairs of moves, namely birth-death and split-merge. Let a
proposal from (k, 0) to (k',¢) that increases the dimension i.e. k' = k + 1 and 0 € ©,,0 € @ ! (see last paragraph of sub-Sec-
tion 2.1.2). Let p(k — k') the probability that such a proposal is made (user specified) and p(k' — k) the probability that the
reverse, dimension-decreasing proposal is made. In order to account for the m = dim(®y,) — dim(®y) difference in the
dimensions of # and ¢, the former is augmented with a vector u € R™ drawn from a distribution q(u). Consider a differential
and one-to-one mapping h : @,,; — O, that connects the three vectors as & = h(6,u). Then as it is shown in [25], the accep-
tance ratio of such a proposal is:

. 7'512_«/5(0’)1.')(’( — k/) 1 00’
e {1’ Ty, (0)p(K — k) q(u) ‘a(o., u)‘} (26)

where )03{’") is the Jacobian of the mapping h. Such a proposal is invariant w.r.t. the density 71, . Similarly one can define,

the acceptance ratio of the reverse, dimension-decreasing move:
. T2, (0)p(K — k -
min {17 12, (0)p(k — ) } (27)

Tz, (0)p(k — K
Details for the reversible pairs used in this work are provided in the Appendix.

o0
(0,u

) ool
)Q(")}a

Table 2
Basic steps of the Adaptive SMC algorithm proposed.

Adaptive SMC algorithm:
(1) For s =0, let {60, w"}"  be the initial particulate approximation to 7,5, = 7; and ESS, the associated effective sample size. Set s = 1.
0 0 Ji=1 To
(2) Reweigh: If wﬁ“(ys) = wg"), % are the updated weights as a function of 7y, then determine 7y, so that the associated ESS; = (ESS;_; (the value
{ =0.95 was used in all the examples). Calculate w for this Ps-

3) Resample: If ESS; < ESSimin then resample. )
4) Rejuvenate: Use an MCMC _kerngl Pg(.,.) that leaves 7y, invariant to perturb each particle 0§"] — g0
5) The current population {6, w{’}" | provides a particulate approximation of 7;,,_ in the sense of Eqs. (23), (24).

(
(
(
(6) If y, <1 then set s =s+ 1 and goto to step 2. Otherwise stop.
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2.3. Prediction

The significance of mathematical models for the computational simulation of physical processes lies in their predictive
ability. It is these predictions that serve as the basis for engineering decisions in several systems of technological interest.
The proposed framework provides a seamless link from experiments/data collection, to model calibration and ultimately
prediction. In the presence of significant sources of uncertainty it is important not only to provide predictive estimates
but quantify the level of confidence one can assign to the predicted outcome. The inferred posteriors 7, corresponding to
various model resolutions can be used to carry out this task. In accordance with the Bayesian mind-set, all unknowns are
considered random. If y denotes the output to be predicted (under specified input, boundary and initial conditions) then,
the predictive posterior p(yly) based on the available data y can be expressed as [23]:

N . “ .
pOlY) = / Py, 0ly)do = / P, (716.) p(oly) do = / L (§10) 7 (0)d0 ~ > WL (3]0 (28)
i likelihood i=1
posterlor 1Kel1noot

The term p(y|0) is the likelihood of the predicted data determined by the forward solver at resolution r as in Eq. (5). Eq. (28)
offers an intuitive interpretation of the predictive process. The predictive posterior distribution is a mixture of the corre-
sponding likelihoods evaluated at all possible states 0 of the system, with weights proportional to the their posterior values.
In the context of Monte Carlo simulations, samples of y from p(y|y) can be readily drawn using the particulate approximation
of each 7, (Eq. (23)). These samples can subsequently be used to statistics of the predicted output y such as moments, prob-
abilities of exceedance which can be extremely useful in engineering practice.

3. Numerical examples

The method proposed is illustrated in problems from nonlinear solid mechanics using artificial data. The governing PDEs
are those of small-strain, rate-independent, perfect plasticity with a von-Mises yield criterion and associative flow rule [57]:

V-6(x) =0 (conservation of linear momentum)
6 =C(E,v): (e —€") (elastic stress—strain relationships)

h(s) := 1/ |ls|* f%(tr[a])z - \/gay,-e,d (yield surface)
oh
P — )
&€=z (flow rule) (29)

where ¢ is the Cauchy stress-tensor, e =1 (Vu +uV) and ¢? the total and plastic-part of the strain tensor, » = (v, vy, v;) is
the displacement vector, C(E, v) is the elastic moduli which depends on the Young’s modulus E (it was assumed that it was
known E = 1000) and Poisson’s ratio v (it was assumed that it was known v = 0.3). The field of interest in all the problems
examined was the yield stress gy;.q(¥) which was assumed to vary spatially. The yield stress determines the boundary of the
elastic domain in the material response. A square two-dimensional domain D = [0, 1] x [0, 1] under plane stress conditions
was considered and the forward solvers were Finite Element models which discretize the governing PDEs of Eq. (29) for
x € D. In order to construct a sequence of solvers operating at different resolutions, we considered 4 different partitions cor-
responding to uniform 8 x 8,16 x 16,32 x 32 and 64 x 64 grids (i.e. with element sizes § x 1, x &, &5 x5 and & x &,
respectively). A critical issue with spatially varying parameters is how this variability is accounted in the discretized repre-
sentation. In this work, we adopted a simple rule according to which each finite element was assigned a constant yield stress
value which was equal to the average of the field gy;q(x) within the element. This scheme by no means represents a con-
sistent upscaling of the governing PDEs let alone being optimal. It can be easily established that it can introduce significant
deviations in the effective response which depends on the full details of the spatially varying field. This poor selection is
made however to emphasize the point that inaccurate solvers can be useful and can lead to significant improvements in
accuracy and efficiency. Their role is to provide a computationally inexpensive approximation to the fine-scale posterior that
can be efficiently updated and refined using a reduced number of runs from more expensive solvers. Naturally, if more
sophisticated upscaling schemes are introduced, that is procedures that can better represent the subgrid scales (e.g.
[12,16,33,34,39,55], the transitions in the sequence of posterior become smoother and the computational effort is further
reduced. This is because relatively inexpensive models could still provide us with as much information about the unknown
field f(x) as a more expensive (and perhaps more brute force) solver.

Since 6y14(X) > OV&, we used our model to infer log(o(x)) i.e. in Eq. (10), f(x) = log(a(x)). The adaptive SMC scheme (Table
2) with N = 100 or N = 500 particles was employed in the examples presented with { = 0.95 and ESSp, = N/2.

The following values for the hyperparameters of the prior model were used (Section 2.1.2):

kmax = 100 and s = 0.1 (Eq. (14)).

a; = 1.0 (Eq. (15)) and a, = 0.0001 (Eq. (16)).
ao=2.0and by =1 x 107° (Eq. (18)).
a=2.and b=1.x107° (Eq. (5)).
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3.1. Example A

In this example it was assumed that the yield stress varied as follows (Fig. 3):
10g Gyiela(X) = —1 exp{—10x> — 2(y — 1)*} — Texp{—2(x — 1)* — 10y*} (30)

The nonlinear governing PDEs (Eq. (29)) were solved using a 64 x 64 uniform finite element mesh with the following bound-
ary conditions:

e vy=1v,=0along x=0.
e v, =—v,=0.001 along x = 1.

The displacements vy, v, at a regular grid consisting of 72 points with coordinates (0.125i,0.125j), fori=1,...,8 and
j=0,...,8 were recorded resulting in n = 144 data points (as in Fig. 3). The empirical mean (of the absolute values) of these
observations u, was calculated and the recorded values were contaminated by Gaussian noise of standard deviation 5%, in

X

(a) 2D view (b) 3D view

Fig. 3. Reference oy,4(x) field for Example A.

Table 3

Computational cost of different resolution solvers for Example A.

Solver resolution Degrees of freedom Normalized computational time (Actual in s)
16 x 16 510 15 (0.55)

32 x32 2046 15 (4.8)

64 x 64 8190 1(86)

X

(a) Posterior mean (b) Posterior 5% and 95% quantiles

Fig. 4. Posterior inference using only the 64 x 64 solver.
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order to obtain sets of observables denoted by {y;}!, in our Bayesian model (Eq. (3)). We note that in this example the scale of
variability of the unknown field 04(%) is larger than the scale of observations, i.e. the grid size where displacements were
recorded.

Table 3 reports the number of degrees of freedom per solver and the normalized computational time for a single run w.r.t.
the 64 x 64 solver. As mentioned earlier, each finite element was assigned a constant yield stress equal to the average value
inside the element. This is of course inconsistent with the governing PDEs as the geometry of the variability plays a critical
role for the effective properties of each element. It is easily understood though that the corresponding posterior should have
some similarities arising from the mere nature of their construction.

At first, we attempted to solve the problem by operating solely on the finest solver. Using the Adaptive SMC scheme pro-
posed with N = 100 particles, this resulted in a sequence of 163 (between the prior 7y and the target posterior) auxiliary
bridging distributions constructed as mentioned earlier. The inferred field (posterior mean and quantiles) are depicted in
Fig. 4. Even though they exhibit similarities with the ground truth (Fig. 3), there are also considerable differences which
suggest that the algorithm probably got trapped in some mode of the posterior. This is to be expected due to the highly

10 10

1 1

0.1 0.1
X X

(a) Resolution 16 x 16 - quantile 5% (b) Resolution 16 x 16 - quantile 95%

1 10 1 ; 10
h .‘ | % -| |
0 0.1 0 0.1
0 1 0 1

X X

(c) Resolution 32 x 32 - quantile 5%  (d) Resolution 32 x 32 - quantile 95%

1 10 1 10
h .i | h -i |
0 0.1 0 0.1
0 1 0 1

X X
(e) Resolution 64 x 64 - quantile 5%  (f) Resolution 64 x 64 - quantile 95%

Fig. 5. Posterior quantiles at various solver resolutions for Example A.
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nonlinear nature of the forward solver and the large state space. It is possible however that the correct solution